Waypoint Navigation with Position and Heading Control using Complex Vector Fields for an Ackermann Steering Autonomous Vehicle
نویسندگان
چکیده
Vector field (otherwise known as force vector or force field) navigation has been used in mobile robotics primarily for goal oriented navigation and obstacle avoidance. At the most basic level the vector field consists of attractive forces, goals, and repulsive forces, usually objects. Both attractive and repulsive forces are usually characterised as point forces. The shortfall of this characterisation is that there is no way of controlling the heading of the mobile robot as it reaches the goal position. In this paper various methods of altering the goal vector field will be looked at. These methods include investigating clustered attractive and repulsive forces as well as introducing rotational and line based forces. This investigation was run using a simulated model of an Ackermann steering vehicle. Results indicated that a complex vector field approach was able to give position and heading control at waypoints with the chosen simulated vehicle.
منابع مشابه
Design and Experimental Evaluation of integrated orientation estimation algorithm Autonomous Underwater Vehicle Based on Indirect Complementary Filter
This paper aims is to design an integrated navigation system constituted by low-cost inertial sensors to estimate the orientation of an Autonomous Underwater Vehicle (AUV) during all phases of under water and surface missions. The proposed approach relied on global positioning system, inertial measurement unit (accelerometer & rate gyro), magnetometer and complementary filter technique. Complem...
متن کاملSimplified Model Development and Trajectory Determination for a UAV using the Dubins Set
In this paper, a simplified aircraft system model is developed correctly emulating the nonlinear dynamics of complex aircraft models under closed-loop control. The simplified model is based on Dubins models used in optimization algorithms for trajectory control of multiple Unmanned Aeriel Vehicles (UAVs). Algorithms optimizing area coverage for reconnaissance based on UAV capabilities, fuel rem...
متن کاملHuman-like Driving for Autonomous Vehicles using Vision-based Road Curvature Modeling
Most autonomous vehicles use GPS to determine vehicle location and heading. Using GPS for vehicle autonomous driving posts a few challenges. It does not look far ahead of the vehicle and requires frequent adjustment of vehicle heading. This results in an unstable control system and increases the chance of unstable driving behavior. Unlike this kind of passive or reactive control system, human d...
متن کاملContinuous Control Primitive Trajectory Generation and Optimal Motion Splines for All-Wheel Steering Mobile Robots
We present a method for trajectory generation for all-wheel steering mobile robots which can account for rough terrain and predictable vehicle dynamics and apply it to the problem of generating optimal motion splines. There has been little work in trajectory generation for vehicles with all-wheel steering capability compared to the Ackermann, differential-drive, or omnidirectional mobility syst...
متن کاملA Path Tracking Algorithm Using Future Prediction Control with Spike Detection for an Autonomous Vehicle Robot
Trajectory tracking is an important aspect of autonomous vehicles. The idea behind trajectory tracking is the ability of the vehicle to follow a predefined path with zero steady state error. The difficulty arises due to the nonlinearity of vehicle dynamics. Therefore, this paper proposes a stable tracking control for an autonomous vehicle. An approach that consists of steering wheel control and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007